Prototype of high-temperature vacuum prober from 300 K to 1200 K for continuous 3-omega thermal measurements

L. Jalabert¹, J. Ordonez-Miranda¹, S. Tachikawa², Y. Wu², R. Anufriev², M. Nomura² and S. Volz¹

¹LIMMS/CNRS-IIS Univ. of Tokyo, ²IIS Univ. of Tokyo

High Temperature (HT)

High Temperature - Applications

- Materials Science
- Sensors in harsh environment (military, nuclear plants, aircraft, automotive, space ...)
- Energy harvesting ...
- Power devices (aging, failure, ...)

Thermal conductance/conductivity

- Bulk materials/stacks
- Thin films/coatings
- Cross-plane
- \circ in-plane
- Nanostructures (PnC, ...)
- Suspended nanofilms
- Surface Phonons Polaritons (SPhP)
- Radiations (near-field, far-field)...

	Hot wire	Laser Flash	TDTR/FDTR	3-omega	
Max Temperature reported	1300 К	~1273 K	1000 K APL 111, 151902 (2017)	750 К ~ 780 К ┥	Weak point
Interest	bulk	bulk	Bulk, micro-nano structures, thin films	Bulk, micro-nano structures, thin films, radiations, anisotropy	
	Jannot, Int. J. Th.Sci, 160, 106672 (2021)	Nishi, HT Mat. & Proc. 39 (2020)	Rost, APL 111, 151902 (2017)	Cahill, RSI 61, 802 (1990) Su, Int J Thermophys 35 (2014)	

1-General requirements for 3-omega thermal measurements

- Sweep **frequencies** ($V_{3\omega} \square$ when $\omega \uparrow$)
- Sweep input **current** ($V_{3\omega} \alpha i^3$)
- Sweep holder temperature

Lock-in amplifiers (LIA) (time constant, sensitivity)

Total number of experiments is quite large : n(F) x m(i) x p(T)

Averaging LIA signals on 10 periods (at least)

Need of CONTINUOUS electrical measurements

2-Market overview for a HT vacuum prober

- NEXTRON (~1050 K) small chamber
- INSTEC (~1000 K)
- LINKAM (~1000 K) small chamber
- ApolloWave (~900 K)
- NAGASE (~800 K)
- ARS Rock Gate (~800 K)
- VIC Int. (~800 K)
- RDEC-MMR (~730 K)
- MICROXACT (~700 K)
- OYAMA (~700 K)
- JANIS /Lakeshore (~675 K)
- WIT Korea (600 K) small chamber
- [NASA (800 K) IEEE Trans Instrum&Meas, 54,1, (2005)]

Main issue of most Vacuum Probers: intermittent contact at HT (to prevent damages on solder parts ...)

> Need to engineer a prototype of HT prober to reach 1200 K

3-Prototype of HT prober (Hisol Japan): main features

- RT to 1200 K
- 6 probes (DC to 1 MHz)
- Continuous measurements
- 2 inches sample

- SiC heater (RT to 1400 K)
- Efficient cooling : tips, quartz window, sidewalls
- Thermocouples on SiC heater & top plate
- \succ Tip motion ~ 200 um at 1200 K \rightarrow large pads

Cr/Pt Micro-resistance from 300K to 1100K

During each temperature step, we perform a frequency sweep that will change the Rs value due to heat transfer. The peaks are not related to the prober but to the running experiment.

3-Temperature calibration

Heat losses due to the cooling power (chiller), and the number of tips connected to the sample, ...

✓ Standard temperature controller (RKC900, ET3504)
✓ Home-made Labview PID controller

4- Molybdenum micro-resistance

100nm thick, 4um in width, 1mm in length

Langoju, Superlattices and Microstructures (2021)

Difficulty Choice of thin film micro-resistance suitable for HT experiments

(Mo, Cr/Au, Ti, Cr/Pt, W,...)

4- Mo micro resistance (300K ~ 1000K)

$$R(T) = R_0 [1 + \alpha (T - T_0) + \beta (T - T_0)^2 + \cdots]$$

Revise the 3ω equations with non linear TCR to extract ΔT_h and ΔT_s